编者按:在ESC2020大会上,舒张性心力衰竭(diastolic heart failure,DHF)的诊治作为临床热点,被列入Late-Breaking Science环节讨论,西安交通大学第一医院马爱群教授团队对DHF相关研究及诊疗进展进行了总结。现整理如下,以飨读者。
目前DHF的诊断主要是结合心衰的症状及体征,心电图、X线片、超声心动图、氨基末端脑钠肽前体(NT-proBNP)进行综合分析,但仍缺乏严格、统一的诊断标准,这也是DHF相关大型临床面临的严峻挑战。现临床用于评估心室舒张功能的心动超声图参数主要包括:
① E峰、A峰值:是测量心脏舒张期二尖瓣口前向血流速度的两个峰值,E峰是左心室舒张早期最大血流,A峰是二尖瓣心房收缩期最大血流。而E/A比值可以进一步评估舒张功能,并进行舒张功能分级。
② e’速度(e’ velocity):是指左室间隔侧和侧壁侧的二尖瓣环运动频谱,经组织多普勒(TDI)测量,若间隔侧e’<7cm/s或侧壁侧e’<10 cm/s提示舒张功能异常。
另外还包括左心室质量指数(LVMI)、左室整体长轴应变(GLS)、左室相对室壁厚度(relative wall thickness,RWT)等反映左心功能及形态的指标。
DHF患者尽管存在舒张功能障碍,但某些测量值可能仍在正常范围内,因此诊断时不应单独使用任何指标来评估舒张功能。欧洲心脏病学会(ESC)心力衰竭协会(HFA)颁布的共识建议应用HFA-PEFF诊断流程进行DHF的诊断,具体分为以下4个步骤。
对于任何出现心衰相关症状和/或体征的患者,应进行初始评估。通常在门诊进行,评估内容包括心衰症状和体征、典型的临床和人口统计学情况(肥胖、高血压、糖尿病、老年人、心房颤动)、诊断性实验室检测(包括血常规、肝肾功、电解质等)、心电图以、标准超声心动图及运动试验。排除其他导致呼吸困难的心源性及非心源性原因,同时LVEF正常,利钠肽(natriuretic peptide,NP)升高或正常,至少有一个DHF的危险因素,则疑诊DHF,进行下一评估。
对于DHF疑似患者,应结合超声心动图测量的心脏结构和功能的综合情况以及NP水平来判断,如图1所示。若得分≥5分提示明确的HFpEF,≤1分诊断为HFpEF的可能性小;2~4分表明诊断存在不确定性,建议进一步评估。评分详见表1。
表1. 基于心动超声图及利钠肽的评分
经运动负荷超声图检查,若平均E/e’≥15,则在第二步的评分系统中加2分,若平均E/e’≥15且TRPV>3.4m/s,则加3分。重新评分,若得分≥5分则可诊断DHF。若得分仍<5分,或者不能完成运动负荷超声图,建议进行侵入性血流动力学监测。
侵入性血流动力学监测包括左心及右心导管检查。经监测,静息状态下,若左室舒张时间常数τ>48 ms或左心室舒张末压(LVEDP)≥16 mm Hg或肺毛细血管楔压(PCWP)≥15 mm Hg,则可诊断DHF;运动负荷状态下,PCWP ≥25 mm Hg可诊断DHF。而静息状态下的高PCWP和运动状态下病理性升高的PCWP是DHF预后不良的预测指标。
来自澳大利亚国家超声数据库(NEDA)最新研究数据表明,无论是LVEF保留还是LVEF受损的患者,与舒张功能正常者相比,舒张功能障碍增加了死亡风险。在单独分析各项舒张功能指标时,E、e’、E/e’及LAVI是增加心血管相关死亡风险的关键点。当E≥90cm/s、e’≤9cm/s、E/e’≥9及LAVI≥32 ml/m2时,死亡率明显增加(图1)。而LVEF受损和年龄增加均可明显影响舒张功能。
确定HFpEF病因或具有类DHF样表现的相似疾病。共识中推荐可以进一步进行心脏核磁、核素显像、PET/CT、病理学检查(如心脏或非心脏的活检)、免疫炎性因子及代谢因子检测、基因检测等。其中心脏核磁在缺血性心肌病、肥厚型心肌病、心肌致密化不全、心肌浸润性疾病、微血管病变等方面具有很高的诊断及鉴别诊断价值。尤其对于年轻、有心肌病/心衰家族史、没有或仅有轻微的危险因素/合并症、左室肥厚、局部心室运动异常、室性心律失常、严重的右心扩张、存在心肌瘢痕组织的人群,更进一步的检测是必要的。而病因或其他相关疾病的诊断,对于DHF的精准治疗意义重大。
目前,尚无可降低DHF患病率和死亡率的确切治疗。特别是,用于HF的传统药物并不能使HFpEF的发病率和死亡率降低,一些DHF治疗相关的大型临床研究也均未得到满意结果。较早的CHARM试验未能证明坎地沙坦对DHF有益,随后一些针对肾素-血管紧张素系统的治疗亦不能降低DHF的死亡率。在PARAGON-HF试验中,与缬沙坦相比,沙库巴曲缬沙坦也不能改善HFpEF患者的DHF再住院率和心源性死亡率,但也有研究表明沙库巴曲缬沙坦具有的抗纤维化特性可能对DHF患者有益。TOPCAT试验研究结果显示,螺内酯仅可降低部分地区DHF患者的心血管死亡和心衰住院率,对于EF≥50%的患者,使用β受体阻滞剂与甚至与心衰住院的风险增加相关。因此目前治疗DHF患者的主要是是病因治疗和对症治疗。
积极治疗常见且对DHF临床进程有明显促进作用的危险因素和合并症,如肥胖、高血压、冠心病、心房颤动、糖尿病、慢性阻塞性肺病、贫血、慢性肾脏病和睡眠呼吸障碍等。这也是DHF患者治疗中最为重要的部分。其中,心动过速时舒张期充盈时间缩短,进一步影响心搏量,因此合并心房颤动的DHF患者,转复并维持窦性心律是首选,慢性心房颤动应控制心室率、积极抗凝]。
总之,DHF是一种组复杂的系统性临床综合征,常伴有多脏器多系统病变,以功能受限、预后差为特点。DHF是老年人中一种快速增长的疾病,NEDA最新研究也表明年龄可以显著影响舒张功能,因此DHF可以认为是衰老并影响所有器官系统的老年综合症,包括多种表型,这可能是诸多针对任何具体、单一治疗方法的临床试验不能获得阳性结果的原因之一。因此,对DHF病理生理、发病机制的进一步认知,并采用表型特异性治疗方法可能是成功管理DHF的关键。
参考文献
1. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-2200.
2. Triposkiadis F, Butler J, Abboud FM, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40(26):2155-2163.
3. Iwano H, Little WC. Heart failure: what does ejection fraction have to do with it? J Cardiol. 2013;62(1):1-3.
4. Mann DL. Is It Time for a New Taxonomy for Heart Failure? J Card Fail. 2016;22(9):710-712.
5. Marwick TH. Ejection Fraction Pros and Cons: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(19):2360-2379.
6. Konstam MA, Abboud FM. Ejection Fraction: Misunderstood and Overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation. 2017;135(8):717-719.
7. van Riet EE, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242-252.
8. Pieske B, Tschope C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297-3317.
9. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350(19):1953-1959.
10. Grossman W. Why is left ventricular diastolic pressure increased during angina pectoris? . J Am Coll Cardiol. 1985;5:607–608.
11. Morgan JP, Erny RE, Allen PD, et al. Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation. 1990;81(2 Suppl):III21-32
12. Westermann D, Kasner M, Steendijk P, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008;117(16):2051-2060.
13. Borlaug BA, Jaber WA, Ommen SR, et al. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart. 2011;97(12):964-969.
14. Eichhorn EJ, Willard JE, Alvarez L, et al. Are contraction and relaxation coupled in patients with and without congestive heart failure? Circulation. 1992;85(6):2132-2139.
15. Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79-96.
16. Pagel PS, Tawil JN, Boettcher BT, et al. Heart Failure With Preserved Ejection Fraction: A Comprehensive Review and Update of Diagnosis, Pathophysiology, Treatment, and Perioperative Implications. J Cardiothorac Vasc Anesth. 2020.
17. van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113(16):1966-1973.
18. van Heerebeek L, Hamdani N, Falcao-Pires I, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830-839.
19. Toledo C, Andrade DC, Lucero C, et al. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. J Physiol. 2017;595(8):2479-2495.
20. Sanderson JE. Factors related to outcome in heart failure with a preserved (or normal) left ventricular ejection fraction. Eur Heart J Qual Care Clin Outcomes. 2016;2(3):153-163.
21. Kalogeropoulos A, Georgiopoulou V, Psaty BM, et al. Inflammatory Markers and Incident Heart Failure Risk in Older Adults The Health ABC (Health, Aging, and Body Composition) Study. Journal of the American College of Cardiology. 2010;55(19):2129-2137
22. Putko BN, Wang Z, Lo J, et al. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLoS One. 2014;9(6):e99495.
23. Sanders-van Wijk S, van Empel V, Davarzani N, et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015;17(10):1006-1014.
24. Borbely A, van der Velden J, Papp Z, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111(6):774-781.
25. Gonzalez A, Lopez B, Querejeta R, et al. Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension. 2010;55(6):1418-1424.
26. Shah SJ, Lam CSP, Svedlund S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439-3450.
27. Crea F, Bairey Merz CN, Beltrame JF, et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473-477.
28. Mohammed SF, Hussain S, Mirzoyev SA, et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550-559.
29. Borbely A, Falcao-Pires I, van Heerebeek L, et al. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res. 2009;104(6):780-786.
30. Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247-1259.
31. Pagel PS, Kehl F, Gare M, et al. Mechanical function of the left atrium: new insights based on analysis of pressure-volume relations and Doppler echocardiography. Anesthesiology. 2003;98(4):975-994.
32. Pandey A, Khera R, Park B, et al. Relative Impairments in Hemodynamic Exercise Reserve Parameters in Heart Failure With Preserved Ejection Fraction: A Study-Level Pooled Analysis. JACC Heart Fail. 2018;6(2):117-126.
33. Obokata M, Olson TP, Reddy YNV, et al. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J. 2018;39(30):2810-2821.
34. Dorfs S, Zeh W, Hochholzer W, et al. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur Heart J. 2014;35(44):3103-3112.
35. David P, Geoffrey S, et al. Late-Breaking Science: Insights from the National Echocardiography Database Australia (NEDA). ESC Congress 2020.https://www.escardio.org/Congresses-&-Events/ESC-Congress/Congress-resources/Congress-news/insights-from-the-national-echocardiography-database-australia-neda
36. Otto CM. Heartbeat: Is there any effective therapy for heart failure with preserved ejection fraction? Heart. 2018;104(5):361-362.
37. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777-781.
38. Zile MR, Gaasch WH, Anand IS, et al. Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial. Circulation. 2010;121(12):1393-1405.
39. Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015;131(1):34-42.
40. Silverman DN, Plante TB, Infeld M, et al. Association of β-Blocker Use With Heart Failure Hospitalizations and Cardiovascular Disease Mortality Among Patients With Heart Failure With a Preserved Ejection Fraction: A Secondary Analysis of the TOPCAT Trial. JAMA Netw Open. 2019;2(12):e1916598.
41. Cleland JG, Tendera M, Adamus J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338-2345.
42. Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med. 2019;381(17):1609-1620.
43. Cunningham JW, Claggett BL, O’Meara E, et al. Effect of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFpEF. J Am Coll Cardiol. 2020;76(5):503-514.
44. Upadhya B, Kitzman DW. Heart failure with preserved ejection fraction: New approaches to diagnosis and management. Clin Cardiol. 2020;43(2):145-155.
45. Machino-Ohtsuka T, Seo Y, Ishizu T, et al. Efficacy, safety, and outcomes of catheter ablation of atrial fibrillation in patients with heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;62(20):1857-1865.